Human Fibromodulin, FMOD GENLISA ${ }^{\text {TM }}$ ELISA

REF: KBH1447

Ver 1.0
RUO
Enzyme Immunoassay for the quantitative determination of Human Fibromodulin, FMOD in serum, plasma and cell culture supernatant

For Research Use Only. Purchase does not include or carry the right to resell or transfer this product either as a stand-alone product or as a component of another product. Any use of this product other than the permitted use without the express written authorization of KRISHGEN BioSystems is strictly prohibited.

REF

KBH1447

KRISHGEN BioSystems Unit Nos\#318/319, Shah \& Nahar,
Off Dr E Moses Road, Worli, Mumbai 400018.
Tel: 91 (22) 49198700 | Email: sales@krishgen.com

Human fibromodulin, FMOD GENLISA ${ }^{\text {TM }}$ ELISA

Introduction:

The Genlisa ${ }^{\text {TM }}$ ELISA kits are used for assessing the specific biomarker in samples analytes which may be serum / plasma as validated with the kit. The kit employs a sandwhich ELISA technique which leads to a higher specificity and increased sensitivity compared to conventional competitive ELISA kits which employ only one antibody. Double antibodies are used in this kit.

Intended Use:

The Human Fibromodulin, FMOD GENLISA ${ }^{\text {TM }}$ ELISA kit is used as an analytical tool for quantitative determination of Human Fibromodulin, FMOD in serum, plasma and cell culture supernatant.

Principle:

The method employs sandwhich ELISA technique. Monoclonal antibodies are pre-coated onto microwells. Samples and standards are pipetted into microwells and Human Fibromodulin, FMOD present in the sample are bound by the antibodies. Biotin labeled antibody is added and followed by HRP (horseradish peroxidase) conjugated secondary antibody is pipetted and incubated to form a complex. After washing microwells in order to remove any non-specific binding, the ready to use substrate solution (TMB) is added to microwells and color develops proportionally to the amount of Human Fibromodulin, FMOD in the sample. Color development is then stopped by addition of stop solution. Absorbance is measured at 450 nm .

Materials Provided:

1. Coated Microtiter Plate (12×8 wells) -1 no
2. Concentrated Standard $40 \mathrm{ng} / \mathrm{ml}-0.5 \mathrm{ml}$
3. Biotin Conjugate -1 ml
4. HRP Conjugate -6 ml
5. Standard Diluent - 3ml
6. Wash Buffer (25X) - 20 ml
7. Substrate $A-6 \mathrm{ml}$
8. Substrate $B-6 \mathrm{ml}$
9. Stop Solution -6 ml

Materials to be provided by the End-User:

1. Microtiter Plate Reader able to measure absorbance at 450 nm .
2. Adjustable pipettes and multichannel pipettor to measure volumes ranging from $25 \mu \mathrm{l}$ to $1000 \mu \mathrm{l}$
3. Deionized (DI) water
4. Wash bottle or automated microplate washer
5. Graph paper or software for data analysis
6. Timer
7. Absorbent Paper

Handling/Storage:

1. All reagents should be stored at $2^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}$ for stability.
2. All the reagents and wash solutions should be used within 12 months from manufacturing date.
3. Before using, bring all components to room temperature $\left(18-25^{\circ} \mathrm{C}\right)$. Upon assay completion ensure all components of the kit are returned to appropriate storage conditions.
4. The Substrate is light-sensitive and should be protected from direct sunlight or UV sources.

Health Hazard Warnings:

1. Reagents that contain preservatives may be harmful if ingested, inhaled or absorbed through the skin.
2. For Research Use Only.

Human fibromodulin, FMOD GENLISA ${ }^{\text {TM }}$ ELISA

Sample Preparation and Storage:

Specimens should be clear and non-hemolyzed. Samples should be run at a number of dilutions to ensure accurate quantitation.

1. Extract as soon as possible after specimen collection as per relevant procedure. The samples should be tested as soon as possible after the extraction. Alternately the extracted samples can be kept in $-20^{\circ} \mathrm{C}$. Avoid repeated freeze-thaw cycles.
2. Serum- Coagulate at room temperature for 10-20 minutes; centrifuge for 20-min at 2000-3000 rpm. Remove the supernatant. If precipitation appears, recentrifuge.
3. Plasma- Use EDTA or citrate plasma as an anticoagulant, mix for 10-20 minutes; centrifuge for 15-min at 2000-3000 rpm. Remove the supernatant carefully. If precipitation appears, recentrifuge.
4. Urine- Collect urine in a sterile container, centrifuge for 20-min at 2000-3000 rpm. Remove the supernatant. If precipitation appears, recentrifuge.
5. Cell Culture supernatant- Detects secretory components. Collect sample in a sterile container. Centrifuge for 20-mins at 2000-3000 rpm. Remove the supernatant carefully. When examining the components within the cell, dilute cell suspension with PBS ($\mathrm{pH} 7.2-7.4$), if cell concentration is greater than $1 \mathrm{million} / \mathrm{ml}$. Damage the cells by repeated freeze-thaw cycles to release intracellular components. Centrifuge for 20-min at 2000-3000 rpm. If precipitation appeared, centrifuge again.
6. Tissue samples- Rinse tissues in PBS (pH 7.4) to remove excess blood thoroughly and weigh before homogenization. Mince tissues and homogenize them in PBS (pH7.4) with a glass homogenizer on ice. Thaw at $2-8^{\circ} \mathrm{C}$ or freeze at $-20^{\circ} \mathrm{C}$. Centrifuge at $2000-3000$ RPM for approximately 20 minutes and collect the supernatant carefully.
Note: Grossly hemolyzed samples are not suitable for use in this assay.

Reagent Preparation (all reagents should be diluted immediately prior to use):

1. Label any aliquots made with the kit Lot No and Expiration date and store it at appropriate conditions mentioned.
2. Bring all reagents to Room temperature before use.
3. To make Wash Buffer (1X); dilute 20 ml of 25 X Wash Buffer in 480 ml of DI water.
4. Standards Dilution: Dilute $120 \mu \mathrm{l}$ of original standard ($40 \mathrm{ng} / \mathrm{ml}$) with $120 \mu \mathrm{l}$ of standard diluent to generate a $20 \mathrm{ng} / \mathrm{ml}$ standard stock solution. Keep the standard for 15 mins with gentle agitation before making dilutions. Prepare bynserially diluting the standard stock solution the standards as per the below table.

$20 \mathrm{ng} / \mathrm{ml}$	Standard No. 5	$120 \mu \mathrm{l}$ Original Standard $+120 \mu$ I Standard Diluent
$10 \mathrm{ng} / \mathrm{ml}$	Standard No.4	$120 \mu \mathrm{l}$ Standard No. $5+120 \mu$ l Standard Diluent
$5 \mathrm{ng} / \mathrm{ml}$	Standard No. 3	120μ I Standard No. $4+120 \mu$ I Standard Diluent
$2.5 \mathrm{ng} / \mathrm{ml}$	Standard No. 2	120μ I Standard No. $3+120 \mu$ I Standard Diluent
$1.25 \mathrm{ng} / \mathrm{ml}$	Standard No. 1	120μ I Standard No. $2+120 \mu$ I Standard Diluent

Procedural Notes:

1. In order to achieve good assay reproducibility and sensitivity, proper washing of the plates to remove excess un-reacted reagents is essential.
2. High Dose Hook Effect may be observed in samples with very high concentrations of Human Fibromodulin, FMOD. High Dose Hook Effect is due to excess of antibody for very high concentrations of Human Fibromodulin, FMOD present in the sample. High Dose Hook effect is most likely encountered from samples early in the purification process. If Hook Effect is possible, the samples to be assayed should be diluted with a compatible diluent. Thus if the
3. Human Fibromodulin, FMOD concentration of the undiluted sample is less than the diluted sample, this may be indicative of the Hook Effect.

Human fibromodulin, FMOD GENLISA ${ }^{\text {TM }}$ ELISA

4. Avoid assay of Samples containing sodium azide $\left(\mathrm{NaN}_{3}\right)$, as it could destroy the HRP activity resulting in under-estimation of the amount of Human Fibromodulin, FMOD.
5. It is recommended that all Standards and Samples be assayed in duplicates.
6. Maintain a repetitive timing sequence from well to well for all the steps to ensure that the incubation timings are same for each well.
7. If the Substrate has a distinct blue color prior to use it may have been contaminated and use of such substrate can lead to compromisation of the sensitivity of the assay.
8. The plates should be read within 30 minutes after adding the Stop Solution.
9. Make a work list in order to identify the location of Standards and Samples.

Assay Procedure:

1. It is strongly recommended that all Controls and Samples be run in duplicates or triplicates. A standard curve is required for each assay.
2. Add $50 \mu \mathrm{l}$ standard to standard well. Note: Don't add biotin conjugate to standard well because the standard solution contains biotinylated antibody.
3. Add $\mathbf{4 0 \mu l}$ sample to sample wells and then add $\mathbf{1 0 \mu}$ I biotin conjugate to sample wells, and then add $\mathbf{5 0 \mu l}$ HRP conjugate to sample wells and standard wells (Not blank control well). Mix well. Cover the plate with a sealer. Incubate for 60 minutes at $37^{\circ} \mathrm{C}$.
4. Remove the sealer and wash the plate 5 times with wash buffer. Soak wells with at least 300μ l wash buffer for 30 seconds to 1 minute for each wash. For automated washing, aspirate all wells and wash 5 times with wash buffer, overfilling wells with wash buffer. Blot the plate onto paper towels or other absorbent material.
5. Add $\mathbf{5 0 \mu l}$ substrate solution \mathbf{A} to each well and then add $\mathbf{5 0 \mu l}$ substrate solution \mathbf{B} to each well. Incubate plate covered with sealer for 10 minutes at $37^{\circ} \mathrm{C}$ in the dark.
6. Add $\mathbf{5 0} \boldsymbol{\mu}$ I Stop Solution to each well, the blue color will change into yellow immediately.
7. Determine the optical density (OD value) of each well immediately using a microplate reader set to 450 nm within 10-15 minuets after adding the stop solution.

Calculation of Results:

Determine the Mean Absorbance for each set of duplicate or triplicate Standards and Samples. Using Graph Paper, plot the average value (absorbance 450nm) of each standard on the Y-axis versus the corresponding concentration of the standards on the X-axis. Draw the best fit curve through the standard points. To determine the unknown Human Fibromodulin, FMOD Concentrations, find the unknown's Mean Absorbance value on the Y -axis and draw a horizontal line to the standard curve. At the point of intersection, draw a vertical line to the Xaxis and read the Human Fibromodulin, FMOD Concentration. If samples were diluted, multiply by the appropriate dilution factor. Software which is able to generate a cubic spline curve-fit is best recommended for automated results.

Note:

It is recommended to repeat the assay at a different dilution factor in the following cases:

- If the sample absorbance value is below the first standard.

Quality Control:

It is recommended that for each laboratory assay appropriate quality control samples in each run to be used to ensure that all reagents and procedures are correct.

Performance Characteristics of the Kit:

This kit has been validated. Please view the details herein below.

Standard Calibrator Concentration Provided \| Standard Calibrator Graph Range | Sensitivity
Standard Calibrator $=40 \mathrm{ng} / \mathrm{ml}$; Standard Calibrator Range $=1.25 \mathrm{ng} / \mathrm{ml}$ - $20 \mathrm{ng} / \mathrm{ml}$;
Sensitivity $=0.049 \mathrm{ng} / \mathrm{ml}$.

Safety Precautions:

- This kit is for research use only. Follow the working instructions carefully.
- The expiration dates stated on the kit are to be observed. The same relates to the stability stated for reagents
- Do not use or mix reagents from different lots.
- Do not use reagents from other manufacturers.
- Avoid time shift during pipetting of reagents.
- All reagents should be kept in the original shipping container.
- Some of the reagents contain small amount of sodium azide ($<0.1 \% \mathrm{w} / \mathrm{w}$) as preservative. They must not be swallowed or allowed to come into contact with skin or mucosa.
- Source materials maybe derived from human body fluids or organs used in the preparation of this kit were tested and found negative for HBsAg and HIV as well as for HCV antibodies. However, no known test guarantees the absence of such viral agents. Therefore, handle all components and all patient samples as if potentially hazardous.
- Since the kit contains potentially hazardous materials, the following precautions should be observed
- Do not smoke, eat or drink while handling kit material
- Always use protective gloves
- Never pipette material by mouth
- Wipe up spills promptly, washing the affected surface thoroughly with a decontaminant.
- In any case GLP should be applied with all general and individual regulations to the use of this kit.

LIMITED WARRANTY

Krishgen Biosystems does not warrant against damages or defects arising in shipping or handling, or out of accident or improper or abnormal use of the Products; against defects in products or components not manufactured by Krishgen Biosystems, or against damages resulting from such non-Krishgen Biosystems made products or components. Krishgen Biosystems passes on to customer the warranty it received (if any) from the maker thereof of such non Krishgen made products or components. This warranty also does not apply to Products to which changes or modifications have been made or attempted by persons other than pursuant to written authorization by Krishgen Biosystems.

THIS WARRANTY IS EXCLUSIVE. The sole and exclusive obligation of Krishgen Biosystems shall be to repair or replace the defective Products in the manner and for the period provided above. Krishgen Biosystems shall not have any other obligation with respect to the Products or any part thereof, whether based on contract, tort, and strict liability or otherwise. Under no circumstances, whether based on this Limited Warranty or otherwise, shall Krishgen Biosystems be liable for incidental, special, or consequential damages.

This Limited Warranty states the entire obligation of Krishgen Biosystems with respect to the Products. If any part of this Limited Warranty is determined to be void or illegal, the remainder shall remain in full force and effect.

Krishgen Biosystems. 2020

THANK YOU FOR USING KRISHGEN PRODUCT!

